Metadata search on large-scale distributed storage systems

Dimitrios Vasilas® 2 and Marc Shapiro?

1Scality
2Sorbonne Universités-UPMC-LIP6 & Inria
dimitrios.vasilas@lip6.fr, marc.shapiro@Qacm.org

1 Problem Statement

The research problem addressed in this PhD is the lo-
cating and management of data stored in object storage
systems. Our goal is to design and implement a scal-
able, geo-distributed search system, focused on queries
on metadata.

Today’s object storage systems store billions of ob-
jects and petabytes of content and are highly updated.
This poses significant challenges to a search subsystem:

e Enabling fast queries on a very large, evolving col-
lection of data.

e Support queries on metadata attributes containing
a mix of data types, including text, integers and
complex structures such as access control lists.

e Tracking content updates incrementally as they
occur, without incuring overhead for the data
store.

e Geo-distributing the index. The search subsystem
should support concurrent updates and queries
originating from clients located in different geo-
graphic locations, and should remain available in
the presence of network partition.

2 Background

Object stores identify and locate objects based on glob-
ally unique identifiers (keys). Although key-based ac-
cess is scalable, it is only useful when the keys of ob-
jects that need to be located are known. Various use
cases, however, require the ability to locate an object
using metadata attributes, without knowing the exact
object key. One example is data lifecycle management
which involves applying policies to the backup, archival
and migration of data, based on their size and access
patterns.

Metadata consist of attributes generated by the stor-
age system (content size, timestamp of last modifica-
tion, author, access control lists), as well as custom,
user-defined attributes, represented as arbitrary key-
value pairs.

The use case of data lifecycle management includes
queries with some common characteristics; Searches of-
ten contain more than one metadata attributes, and
use both exact match and range predicates as well as
logical operators.

We model a geo-distributed data store as a set of
storage processes running on servers that are placed
at different geographic sites (data centers). Storage
processes act as ingest points for content updates from
clients, and replicate data among them. The search
system should receive client updates, and enable clients
located at any site to search the entire data store.

3 Literature Review

Some indexing algorithms support keyword search,
thanks to a distributed inverted index implemented
atop a Distributed Hash Tables (DHT) [1]. Although a
DHT provides efficient key lookup, this approach is not
adapted to searching for ordered data, such as strings
and dates, which involves implementing range queries.

Other approaches use skip-lists, a multi-level index-
ing mechanism based on hierarchies of lists [2]. This
is more adapted to range queries, since skip lists are
ordered.

Another class of indexing systems implement meta-
data search for large-scale file systems [3, 4]. These
approaches are not suitable for the flat namespace of
object storage systems, as they assume the hierarchical
structure of traditional file systems in order to leverage
namespace locality.

4 Approach

We have implemented a prototype metadata search
system, which addresses some of the above challenges.

Our system maintains a distributed inverted index.
It consists of a set of indexing and search proceses.
An indexing process receives client updates, updates
its local index, and propagates updates to other in-
dexing processes. A search process receives query op-



erations, contacts the appropriate indexing processes,
and merges the retrieved results. Indexing processes
are organised in groups, and each group is assigned a
set of metadata attributes to index [5]. Each process
of a group is located in a different geographic site. It
receives local updates for the assigned attributes, and
propagates results to the other sites.

The system’s inverted index maps metadata at-
tribute values to sets of object keys, indicating which
objects cocntain the particular attribute values. Meta-
data attributes of different data types are encoded as
text using the same representation, and are stored in
lexicographic order. The system can thus use a uni-
form search interface, and gsupport range queries on
ordered data types.

Our inverted index implementation relies on
Conflict-Free Replicated Data Types (CRDTSs), repli-
cated data types that guarantee convergence of con-
flicting operations without the need for application
conflict handling [6]. The use of CRDTSs enables index-
ing processes of the same group to propagate and merge
their local index, without the need for central synchro-
nization, despite messages being duplicated and reor-
dred.

Indexing processes store the inverted index per-
sistently in AntidoteDB [7], a highly-available, geo-
distributed key-value store. We use Antidote’s geo-
replication mechanism to propagate local index up-
dates between indexing processes of the same group.

5 Discussion

Indexing processes update the inverted index and prop-
agate index updates between site asynchronously, in
order to avoid degrading the performance of the stor-
age system. Inherently, this approach causes the in-
dex to be stale relative to the data store. We plan
to introduce probes that estimate this statelness [8].
If staleness increases beyond a threshold specified by
the application, a feedback loop will attempt to reduce
it, by using techniques such as addapting the update
propagation algorithm, or throttling the rate of data
updates. [9].

We plan to evaluate our systems efficiency in ad-
dressing the challenges posed by the target use case.
Our metrics can be the query answering latency and
throughput. We will evaluate our system’s scalability
in indexing large datasets, and experiment with queries
containing a mix of data type, various search types and
logical operators. We also plan to evaluate the impact
of our design decision, such as the use of CRDT’s and
Antidote, on the system’s performance. Finally, as this
PhD is prepared in collaboration with Scality, a data
storage company. we plan to integrate our prototype to
Scalitys storage system. This will allow us to perform

further testing in a real-world environment, in order to
validate and refine approach.

References

[1] Lintao Liu, Kvung Dong Ryu, and Kang-Won
Lee. Supporting efficient keyword-based file search
in peer-to-peer file sharing systems. In Global
Telecommunications Conference, 2004. GLOBE-
COM ’04. IEEE, volume 2, pages 1259-1265 Vol.2,
Nov 2004.

[2] Shuming Shi, Guangwen Yang, Dingxing Wang, Jin
Yu, Shaogang Qu, and Ming Chen. Making Peer-
to-Peer Keyword Searching Feasible Using Multi-
level Partitioning, pages 151-161. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[3] Andrew Leung, Minglong Shao, Timothy Bisson,
Shankar Pasupathy, and Ethan L. Miller. Spy-
glass: Fast, scalable metadata search for large-
scale storage systems. In Proceedings of the 7th
USENIX Conference on File and Storage Technolo-
gies (FAST °09), February 2009.

[4] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and
L. Tian. Smartstore: a new metadata organiza-
tion paradigm with semantic-awareness for next-
generation file systems. In Proceedings of the Con-
ference on High Performance Computing Network-
ing, Storage and Analysis, pages 1-12, Nov 2009.

[5] Amy Tai, Michael Wei, Michael J. Freedman, It-
tai Abraham, and Dahlia Malkhi. Replex: A
scalable, highly available multi-index data store.
In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 337-350, Denver, CO,
2016. USENIX Association.

[6] Marc Shapiro, Nuno Preguica, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types.
volume 6976, pages 386400, Grenoble, France, Oc-
tober 2011.

[7] Antidote reference platform.
com/SyncFree/antidote.

https://github.

[8] Peter Bailis, Shivaram Venkataraman, Michael J.
Franklin, Joseph M. Hellerstein, and Ion Stoica.
Probabilistically bounded staleness for practical
partial quorums. Proc. VLDB Endow., 5(8):776—
787, April 2012.

[9] Haifeng Yu and Amin Vahdat. Design and evalua-
tion of a conit-based continuous consistency model
for replicated services. ACM Trans. Comput. Syst.,
20(3):239-282, August 2002.



