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Abstract
Distributed systems often rely on replicated databases, with
different data consistency guarantees for different operations,
affecting their performance. The topic of consistency has
been studied thoroughly but in a static manner, focusing on
strict correctness invariants of the applications, and assuming
resources are constant and plentiful. This thesis aims to
investigate the impact of dynamically-adjusted consistency,
based either on the available resources or user-specifiable
system goals, on the performance of a replicated database.
We expect that such an approach can reduce costs and
performance penalties in resource starvation scenarios.

1. Introduction and Background
Many of today’s information systems rely on distributed
databases in order to achieve availability and scalability. Typ-
ically, these databases maintain multiple replicas of shared
data. The replicas exchange data between them, guaranteeing
clients can access the updated data from any of the replicas.

Historically, replicated databases have provided strong
consistency, which makes them behave as if all operations
were handled by a single node. However, this strong model re-
quires a high degree of synchronization between the replicas,
resulting in significant performance penalties and making the
system unavailable under network partitions, as stated by the
CAP theorem [3].

To tackle extreme load, modern databases may forego the
high degree of replica synchronization that programmers are
familiar with, by using Optimistic Replication [5]. In this
replication model, each replica performs the operations re-
quested by a client locally, immediately returning a success
to the client. The effect of this operation is eventually propa-
gated to the other replicas, without any strict time constraints.
However, this may lead to anomalies: unwanted behavior
caused by concurrent access that would not exist in strong
consistency databases.

While applications can often tolerate such anomalies, vi-
olations of their invariants are not acceptable. Weak con-
sistency models that completely forego synchronization are
often too weak to enforce some invariants. To address these
issues, a few databases provide hybrid consistency models,
allowing for certain operations to be synchronized between

replicas (red operations), while others are committed locally
and scheduled for eventual propagation (blue operations). Re-
cent work [4] addresses how to compute the optimal set of
operations to be synchronized.

2. Smarter Update Dissemination
To the best of our knowledge, the dissemination of updates in
hybrid-consistency databases (e.g. Antidote [1]) hasn’t been
studied extensively: state of the art considers that updates
of a replica are propagated periodically to other replicas
without any information on network topology or congestion,
relying on a general-purpose consistency-oblivious message-
passing overlay. The work has also always considered the
deployments have plenty of resources to handle the workload.

The claim here is that if databases consider the available
finite resources, they can adapt their behavior to make more
efficient use of them.

3. Dynamic Consistency
Previous work has only considered the criteria of correctness
when it comes to selecting the degree of synchronization
of the operations. These criteria are based on the static
needs of the application and therefore assign a static level of
consistency to a given operation.

For example, in a weakly-consistent file system, such as
Dropbox [2] or GeoFS [6], writing to a file may be consid-
ered a blue operation, although it may result in unwanted
behavior: if two users concurrently write to the same file,
both systems will create additional conflicting copy files as a
result. Although both file systems don’t necessarily violate
their correctness, this can be seen as an anomaly and should
be avoided for the sake of user experience. One idea is to
prioritize the updates queued for dissemination that are more
anomaly-prone in order to reduce their vulnerability window,
or to adapt the propagation frequency between the replicas.

To do this, we could employ machine-learning to analyze
the workload and when anomalies happen and prioritize
updates accordingly to their probability of causing a anomaly
if delayed.

The opposite idea applies for non-critical invariants: opera-
tions that may have initially been flagged as red, can probably
be relaxed to blue under extreme system load without sac-
rificing system correctness in a very critical sense. Some
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low-priority messages (e.g. activity log for a given user of
a social network) may even be withheld indefinitely, until
the network has enough bandwidth for it to be transmitted
without affecting more time-sensitive updates.

Although we focused exclusively on how to reduce anoma-
lies, the methodology can be customized to any set of goals.
Other potentially interesting goals are to reduce bandwidth
costs (e.g. 95th percentile), and update latency (either to expe-
dite causally-dependable updates in order to reduce visibility
latency for dependent ones, or to expedite updates that are
more likely to be requested when a client does a consistent
read from a snapshot).

4. Plans for Future Work
The plan is to develop a smart message queuing system
for Antidote [1] that optimizes the behavior of inter-replica
communication with respect to user-defined goals, taking into
account available resources and workload prediction.

Currently, as a first step we are evaluating existing machine
learning algorithms to tackle a simplified version of the
problem, focusing only on reducing the number of anomalies.
We then plan to integrate the system from the previous step
into Antidote as an initial prototype. Ultimately we would like
to test the system in both datacenter-centric environments,
and as well as more resource-constrained environments such
as community networks[7], in order to identify the strengths
and weaknesses of our approach, as well as identify and
quantify possible tradeoffs.
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