
Let’s Build Provable Multicore Schedulers!

Redha Gouicem
Sorbonne Universités, Inria, LIP6

redha.gouicem@lip6.fr

Keywords Operating Systems, Multicore, Domain-Specific
Language, Scheduling

1. Motivation
The default Linux scheduler, the Completely Fair Sched-

uler (CFS), tries to be as generic as possible and handle
all kinds of workloads. However, handling every workload’s
specificities is complex. Over time, it has grown at quite a
fast pace. For example, as shown in figure 1, one of the main
file of the scheduler (fair.c) has increased from roughly
600 to 5000 lines of code since CFS introduction in 2007
(nearly ×10 in 10 years). This shows us that it is not likely
that one will ever be able to design a perfect scheduling
policy. Each workload has different characteristics and re-
source needs that might be conflicting with another work-
load’s. Yang et al. [13] propose another generic scheduler
that differentiates interactive and best-effort applications and
handles them differently. On the contrary, one can build the
scheduler specifically for an application or a class of appli-
cations. Zhuravlev et al. [14] evaluate multiple classification
schemes ([3], [7], [12]) and their implementation as a crite-
rion for a user space scheduler. Those policies aim at lower-
ing cache contention. Antonopoulos et al. [2] propose a user
space scheduling policy minimizing contention on the mem-
ory controller. Teabe et al. [11] propose to change an applica-
tion’s quantum depending on its I/O activity. Usually, those
policies are implemented in user space using techniques like
thread pinning, since implementing a scheduler in an oper-
ating system’s kernel requires a high level of expertise due
to the complexity of kernel code. Unfortunately, this adds
another layer over the kernel space scheduler, which can in-
terfere with the user space policy.

Another problem met when writing a scheduling policy
is the ability to have confidence in the policy we are writ-
ing. One might want to ensure multiple properties like live-

[Copyright notice will appear here once ’preprint’ option is removed.]

Figure 1. fair.c file evolution

ness (no starvation), fairness between processes or work-
conservation between cores. Recently, multiple works were
conducted with the purpose of proving that parts of an op-
erating system were correct according to their specification.
Amani et al. [1] and Chen et al. [4] prove file systems be-
havior, Gu et al. [5] propose a certified kernel, and Klein
et al. [6] propose a formally verified kernel. Yet, proving
high level properties (in our case, liveness, fairness, work-
conservation) is a highly difficult task that cannot be per-
formed by any software developer willing to implement a
scheduler.

2. PhD thesis approach
During this PhD thesis, we will investigate scheduler de-

velopment and property proving, and try to propose a so-
lution enabling software developers to write their own spe-
cific kernel space scheduler with minimal kernel expertise,
as well as a way to prove if their scheduler guarantees sev-
eral properties related to scheduling.

In order to write a kernel space scheduling policy, one
must be sure that one’s implementation is safe, meaning that
the kernel must neither hang nor crash because of the sched-
uler. Muller et al. [9] propose Bossa, a domain-specific lan-
guage tailored to write schedulers for single core systems.
This allows software developers to implement kernel sched-
ulers without the kernel development expertise needed to

1 2017/2/13



DSL policy

Compiler

Linux kernel module
(C)

Proving language
(Leon/F*)

Patched Linux
Kernel

C target Leon/F* target

Scheduling events

Figure 2. DSL system architecture

write safe code. For this PhD thesis, we propose to follow
up this approach and extend it to multicore systems. The first
challenge is to define exactly what is related to the schedul-
ing policy and what is not. We break down the scheduler into
small parts or events. This way, it is easier for developers to
write their scheduling policy, and for us to insert this code
into the kernel. This will also allow us to verify and prove
small parts of the policy, instead of trying to prove it as a
whole.

We propose to use the same design as Bossa, with new ab-
stractions for multicore systems. This means that we have to
understand and abstract the load balancing phase of schedul-
ing. As presented in Figure 2, scheduling policies are writ-
ten in our DSL, then compiled to C-code ready to be com-
piled into a kernel module. This module will be inserted in
a generic kernel patched to support event-based scheduling.
The challenging part of this process is that it must be safe:
the compiler must not generate code that will hang or crash
the kernel.

Our subsequent goal is to provide another target to our
compiler in order to generate proofs regarding various
scheduling properties (liveness, fairness, work-conservation).
This target should be a language that provides automatic
proving tools, such as Scala (using Leon [8]) or F* [10].
One major challenge here is to be able to automatically gen-
erate proofs while preserving the expressivity of the DSL.

References
[1] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah,

Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Na-
gashima, Japheth Lim, Thomas Sewell, et al. Cogent: Veri-
fying high-assurance file system implementations. In ACM
SIGPLAN Notices, volume 51, pages 175–188. ACM, 2016.

[2] Christos D Antonopoulos, Dimitrios S Nikolopoulos, and
Theodore S Papatheodorou. Scheduling algorithms with bus
bandwidth considerations for smps. In Parallel Processing,
2003. Proceedings. 2003 International Conference on, pages
547–554. IEEE, 2003.

[3] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Soli-
hin. Predicting inter-thread cache contention on a chip multi-
processor architecture. In High-Performance Computer Ar-
chitecture, 2005. HPCA-11. 11th International Symposium
on, pages 340–351. IEEE, 2005.

[4] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala,
M Frans Kaashoek, and Nickolai Zeldovich. Using crash
hoare logic for certifying the fscq file system. In Proceed-
ings of the 25th Symposium on Operating Systems Principles,
pages 18–37. ACM, 2015.

[5] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman
Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. Cer-
tikos: an extensible architecture for building certified concur-
rent os kernels. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX As-
sociation, 2016.

[6] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. sel4:
Formal verification of an os kernel. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems princi-
ples, pages 207–220. ACM, 2009.

[7] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and
Scott Hahn. Using os observations to improve performance
in multicore systems. IEEE micro, 28(3), 2008.

[8] EPFL LARA team. Leon, https://leon.epfl.ch/.

[9] Gilles Muller, Julia L Lawall, and Hervé Duchesne. A frame-
work for simplifying the development of kernel schedulers:
Design and performance evaluation. In High-Assurance Sys-
tems Engineering, 2005. HASE 2005. Ninth IEEE Interna-
tional Symposium on, pages 56–65. IEEE, 2005.

[10] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Ras-
togi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan
Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
et al. Dependent types and multi-monadic effects in f. In ACM
SIGPLAN Notices, volume 51, pages 256–270. ACM, 2016.

[11] Boris Teabe, Alain Tchana, and Daniel Hagimont. Application-
specific quantum for multi-core platform scheduler. In Pro-
ceedings of the Eleventh European Conference on Computer
Systems, page 3. ACM, 2016.

[12] Yuejian Xie and Gabriel Loh. Dynamic classification of
program memory behaviors in cmps. In the 2nd Workshop
on Chip Multiprocessor Memory Systems and Interconnects.
Citeseer, 2008.

[13] Ting Yang, Tongping Liu, Emery D Berger, Scott F Kaplan,
and J Eliot B Moss. Redline: First class support for interac-
tivity in commodity operating systems. In OSDI, volume 8,
pages 73–86, 2008.

[14] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fe-
dorova. Addressing shared resource contention in multicore
processors via scheduling. In ACM Sigplan Notices, vol-
ume 45, pages 129–142. ACM, 2010.

2 2017/2/13


