
Dynamic Acyclicity of Concurrent Graph Objects
Sathya Peri, Muktikanta Sa, Nandini Singhal

Department of Computer Science & Engineering
Indian Institute of Technology Hyderabad, India

{sathya p, cs15resch11012, cs15mtech01004}@iith.ac.in

Abstract—In this paper, we propose an algorithm for maintain-
ing a concurrent directed graph (for shared memory architecture)
that is concurrently being updated by threads adding/deleting
vertices and edges, one such example is shown in the Figure 1.
The update methods of the algorithm are deadlock-free while the
contains methods are wait-free. To the the best of our knowledge,
this is the first work to propose a concurrent data structure for
an adjacency list representation of the graphs. We extend the
lazy list[4] implementation of concurrent set for achieving this.

We believe that there are many applications that can benefit
from this concurrent graph structure. An important application
that inspired us is Serialization Graph Testing(SGT ) in databases
and Transactional Memory. Motivated by this application, on
this concurrent graph data-structure, we pose the constraint
that the graph should be acyclic. We ensure this by checking
graph acyclicity whenever we add an edge. To detect the cycle
we propose a Wait-free reachability algorithm. We compare the
performance of the proposed concurrent data structure with the
coarse-grained locking implementation and we achieve significant
speedups.

I. INTRODUCTION

Graph is a common data-structure that can model many real
world objects & relationships. A graph represents pairwise
relationships between objects along with their properties.
Due to their usefulness, graphs are being used in various
fields like genomics, networks, coding theory, scheduling,
computational devices, networks, organization of similar and
dissimilar objects, etc. The current trends of research on graphs
are on social networks, semantic networks, ontology, protein
structure, etc. Generally, these graphs are very large and
dynamic in nature. Dynamic graphs are the once which are
subjected to a sequence of changes like insertion, deletion of
vertices and/or edges [3]. Online social networks (facebook,
linkedin, google+, twitter, quora, etc.), are dynamic in nature
with the users and the relationships among them changing
over time. There are several important problem that can
become challenging in such a dynamic setting: finding cycles,
graph coloring, minimum spanning tree, shortest path between
a pair of vertices, strongly connected components, etc. We
have been specifically motivated by the problem of (SGT )
scheduler [2, 8] from Databases. A database scheduler (as
the name suggests) handles the concurrency control over a
set of transactions running concurrently. A transaction is a
block of code invoked by a thread/process to access multiple
shared memory variables atomically. The scheduler commits
a transaction if does not violate correctness (which is serial-
izability); otherwise the transaction is aborted. The traditional
solution employed by SGT & STMs to maintain dynamic

Figure 1: An example of a directed acyclic graph in the shared
memory which is being accessed by multiple threads. Thread
T1 is trying to add a vertex 10 to the graph. Thread T2 is
concurrently invoking a remove vertex 3. Thread T3 is also
concurrently performing an addition of directed edge from
vertex 9 to vertex 8 and will later create a cycle.

graphs is to use a single coarse lock to protect the entire graph.
Clearly, this implementation can be speeded up by providing
finer granularities of synchronization. Each thread which has
invoked a transaction should independently be able add/delete
vertices/edges to independent parts of the graph.

It can be seen that this problem gets complicated if the
graph is huge and multiple threads are concurrently accessing
the graph and performing some operations. There are many
efficient well-known algorithms for solving these problems in
the sequential world. However, there are a very few works in
the area of concurrent graphs shared memory setting. There
has been a recent and relevant work on the area of concurrent
graphs by Kallimanis and Kanellou [6]. Their work also
discusses about concurrent graph which supports operations;
addition/deletion of vertices/edges and dynamic traversal. But
they represent dynamic graph in the form of adjacency matrix
with fixed upper-limit on the total number of vertices. Hence,
their work can not be used to build SGT scheduler. Moreover,
it is not obvious how to extend their work to check for graph
acyclicity.

II. CONCURRENT GRAPH DATA-STRUCTURE

A. Overview

The problems addressed in this paper are defined a concurrent
directed graph G = (V,E), which is dynamically being



modified by a fixed set of concurrent threads. In this setting,
threads may perform insertion / deletion of vertices or edges
to the graph. We also maintain an invariant that the concurrent
graph G updated by concurrent threads should be acyclic. This
means that the graph should preserve acyclicity at the end of
every operation in the generated equivalent sequential history.
Serialization Graph Testing Algorithm which is our motivating
example, assumes that all the transactions have unique ids.
Once a transaction is deleted it does not back come again into
the system. As a result, we assume that all the vertices are
assigned unique keys and duplicate vertices are not allowed.
We assume that if a vertex id has been removed, it will not
be added again to the concurrent graph G.

B. Methods Exported & Sequential Specification

In this section, we describe the methods exported by the
concurrent directed graph data structure along with their se-
quential specification. This specification as the name suggests
shows the behaviour of the graph when all the methods are
invoked sequentially.

1) The AddV ertex(u) method adds a vertex u to the graph,
if it is not there already, it returns true. As we don’t
allow duplicate vertices in the graph this method will
never return false.

2) The RemoveV ertex(u) method deletes vertex u from
the graph, if it is present in the graph and returns true.
By deleting this vertex u, this method ensures that all
the incoming and outgoing vertices of u are deleted as
well. If the vertex is not in the graph, it returns false.

3) The AddEdge(u, v) method adds a directed edge (u, v)
to the concurrent graph if the edge (u, v) is not already
present in the graph and returns true. If the edge is
already in the graph it simply returns true. But if either
the vertices u or v is not present, it returns false.
To maintain the graph acyclicity invariant, we change
the specification of the AddEdge method as follows: if
either the vertices u or v is not present, it returns false.
Similarly, if the edge is already present in the graph, it
returns true. If both the vertices u & v are present and
the edge is not in the graph already, this method tests
to see if this edge (u, v) will form a cycle in the graph
by invoking CycleDetect method. If it does not form a
cycle, the edge is added and it returns true. Otherwise,
it returns false.

4) The RemoveEdge(u, v) method deletes the directed
edge (u, v) from the graph structure if it is present and
returns true. If the edge (u, v) is not present in the graph
but the vertices u & v are in the graph it still returns
true. But, if either of the vertices u or v is not present
in the graph it returns false.

5) The ContainsEdge(u, v) returns true, if the graph
contains the edge (u, v); otherwise returns false.

6) The ContainsV ertex(u) returns true, if the graph
contains the vertex u; otherwise returns false.

We assume that a typical application invokes
significantly more contains methods (ContainsEdge

and ContainsV ertex) than the update methods
(AddV ertex,RemoveV ertex,AddEdge,RemoveEdge).

III. MAINTAINING GRAPH ACYCLICITY

In this section, we consider the problem of maintaining an
invariant of acyclicity in this concurrent dynamic graph data
structure. As described earlier, the objective is to maintain
an acyclic conflict graph of transactions for SGT . For a
concurrent graph to be acyclic, the graph should maintain the
acyclic property at the end of each operation in the equivalent
sequential history. To achieve this, we try to ensure that the
graph stays acyclic in all the global states. It is easy to see that
a cycle can be created only on addition of edge to the graph.
We modify the concurrent graph data structure presented in the
earlier section to support this acyclic property. The sequential
specification of AddEdge is relaxed as follows: after a new
directed edge has been added to the graph (in the shared
memory), we verify if the resulting graph is acyclic. If it is, we
leave the edge. Otherwise we delete the edge from the shared
memory. Thus AddEdge(u, v) may fail even if the edge (u, v)
was not already part of the graph.

A. Wait-Free Reachability Algorithm working Process

1) Start traversing the adjacency list of v to find u in the
concurrent graph, without acquiring locks.

2) Traversed vertices are added to the local ReachSet and
the vertex v is marked to be explored.

3) Recursively explore (similar to breadth first traversal)
the outgoing edges from the neighbors of v to find u.

4) Do this until all the vertices in all the paths from v to
u in G have been explored or a cycle has been detected
in the graph.

IV. RESULTS

We performed our tests on 10 core Intel Xeon (R) CPU
E5-2630 v4 running at 2.02 GHz core frequency. Each core
supports 2 hardware threads. Every core’s L1, L2 cache are
private to that core; L3 cache (25MB) is shared across all
cores of a processors. The tests were performed in a controlled
environment, where we were the sole users of the system. The
implementation was written in C++ and threading is achieved
by using Posix threads.

In the experiments conducted, we start with an empty
graph initially. When the program starts, it creates 150
threads and each thread randomly performs a set of oper-
ations chosen by a particular workload distribution. Here,
the evaluation metric used is the time taken to complete
all the operations. We measure speedup obtained against
the sequential implementation and present the results for
the following workload distributions: (a) Update-dominated:
25% AddV ertex, 25% AddEdge, 10% RemoveV ertex,
10% RemoveEdge, 15% ContainsV ertex and 15%
ContainsEdge (b) Contains-dominated: 7% AddV ertex,
7% AddEdge, 3% RemoveV ertex, 3% RemoveEdge, 40%



a) b) c)

Figure 2: a) Speedup obtained against sequential v/s Number of operations/thread for Contains-dominated workload b) Update-
dominated workload c) Acyclicity Data Structure

ContainsV ertex and 40% ContainsEdge and the perfor-
mance results are depicted in Figure 2. Each data point is
obtained after averaging for 5 iterations.

V. CONCLUSION & FUTURE DIRECTION

In this paper, we have shown how to construct a fully
dynamic concurrent graph data structure, which allows threads
to concurrently add/delete vertices/edges. The update methods
of the algorithm are deadlock-free while the contains methods
are wait-free. To the the best of our knowledge, this is the first
work to propose a concurrent data structure for an adjacency
list representation of the graphs. The other known work on
concurrent graphs by Kallimanis & Kanellou [6] works on
adjacency matrix and assume an upper-bound on the number
of vertices while we make no such assumption.

We believe that there are many applications that can benefit
from this concurrent graph structure. An important application
that inspired us is SGT in databases and Transactional Mem-
ory. Motivated by this application, on this concurrent graph
data-structure, we pose the constraint that the graph should be
acyclic. We ensure this by checking graph acyclicity whenever
we add an edge. To detect the cycle we have proposed
a Wait-free reachability algorithm. We have compared the
performance of the concurrent data structure with the coarse-
grained locking implementation and we achieve a significant
speedup. For proving the correctness of our algorithm, we have
used the linearizability property [5] and illustrated the proof
sketch using linearization points and the complete pseudo code
and proof sketch is described in the technical report [7]. In the
future, we plan to develop a more efficient concurrent graph
data structure which can efficiently delete the incoming edges
of a vertex. We also plan to extend this concurrent object
by lifting the constraint of not allowing vertices to come
again with the same key, once they have been deleted. The
concurrency in wait-free reachability algorithm can be further
increased by using two-way searching technique. We also plan
to think of other ways of cycle detection by extending ideas
of incremental cycle detection algorithms [1] to the concurrent
setting.

REFERENCES

[1] M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan.
A new approach to incremental cycle detection and related
problems. ACM Trans. Algorithms, 12(2):14, 2016.

[2] M. A. Casanova. Concurrency Control Problem for
Database Systems. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 1981.

[3] C. Demetrescu, I. Finocchi, and G. F. Italiano. Dynamic
graphs. In Handbook of Data Structures and Applications.
2004.

[4] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III,
and N. Shavit. A lazy concurrent list-based set algorithm.
Parallel Processing Letters, 17(4):411–424, 2007.

[5] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[6] N. D. Kallimanis and E. Kanellou. Wait-free concurrent
graph objects with dynamic traversals. In 19th Interna-
tional Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France,
pages 27:1–27:17, 2015.

[7] S. Peri, M. Sa, and N. Singhal. Maintaining acyclicity of
concurrent graphs. CoRR, abs/1611.03947, 2016.

[8] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann, 2002.


	Introduction
	Concurrent Graph Data-Structure
	Overview
	Methods Exported & Sequential Specification

	Maintaining Graph Acyclicity
	Wait-Free Reachability Algorithm working Process

	Results
	Conclusion & Future Direction

