
E�ectiveness of Driver Isolation and Testing
in User Space

Oliver Schwahn
DEEDS, TU Darmstadt, Germany

os@cs.tu-darmstadt.de

1 �e Device Drivers Problem
Device Drivers have o�en been identi�ed as a major source
of reliability issues in commodity operating systems (OSs).
Static analyses of the Linux kernel show that the majority
of detected bugs reside in driver code [3, 11]. �ese �ndings
suggest that driver code is particularly prone to errors or
so�ware bugs. One explanation for this observation is that
driver development in kernel space is generally a challenging
task requiring experience and expert knowledge. Drivers are
inherently complex due to their asynchronous nature, the
close interaction with kernel and hardware interfaces, and
the support for di�erent hardware devices (revisions) in one
driver. Moreover, kernel space development su�ers from a
lack of tool support compared to user space development [8].

Bugs in driver code have severe consequences for the
whole system. In most (monolithic) OSs, drivers are heavily
coupled extensions of the kernel that are linked to the kernel
binary at compile- or run-time. �ey share the same address
space with the kernel and operate with highest privileges.
Hence, buggy (or malicious) drivers can read/write arbitrary
memory and program hardware devices and buses with un-
foreseeable e�ects on the system, ranging from crashes to
permanent data corruption.

Existing approaches strive to improve the situation are
manifold: (1) Driver isolation approaches (e.g. [2, 17]) at-
tempt to contain faults and there e�ects such that the kernel
is not a�ected. (2) Driver recovery (e.g. [16]) a�empts to
detect driver failures and (transparently) recover to a clean
state. (3) Driver synthesis, new architectures and languages
(e.g. [13–15]) a�empt to make writing drivers easier. (4) Test-
ing approaches (e.g. [12]) try to make testing drivers easier
and more comprehensive. However, none of the existing
approaches is widely adopted in practice although isolation
approaches, which a�empt to break the heavy kernel–driver
coupling, promise ad-hoc reliability improvements.

2 Research�estions
We plan to investigate why driver isolation techniques are
not used in contemporary kernels and whether we can apply
advances in testing techniques to driver testing to improve
driver code quality.

2.1 E�ectiveness of Isolation
Relying on user space processes for isolating OS components
is a natural choice as user space processes have existed for
a long time in OSs. �eir isolation capabilities are based

on hardware supported address space separation and an un-
privileged execution mode. Microkernel OSs such as the L4
family [7] make extensive use of user space processes for
isolation. Approaches for moving drivers of monolithic sys-
tems into user space processes [2, 8, 9] follow the same idea
by re-using existing isolation capabilities of the kernel rather
than introducing new and complex mechanisms. Hence, we
will focus on user space isolation.

2.1.1 Which Faults Can Be Isolated?
A natural question is how well a user space driver is isolated
from the rest of the system, i.e., if a driver fault occurs, is the
e�ect limited to the isolated driver or can the error propagate
to a�ect other system components? �e existing works only
evaluate isolation properties against a small set of “expected”
faults, but do not thouroughly investigate system behavior
in the presence of di�erent fault types.

We propose to study how e�ective isolation approaches
are by performing fault injection experiments [4] on iso-
lated and unisolated drivers. From such experiments, we
hope to learn which techniques are e�ective in containing
which types faults and why. Earlier studies identi�ed dif-
ferent bug classes including protocol violations and concur-
rency bugs [13] as well as di�erent classes of typical human
programmer errors [10]. We expect di�erent techniques to
have di�erent e�ectiveness for these fault classes. A prelimi-
nary study we performed has shown that systems relying on
shared kernel data have high potential to corrupt kernel data
as precise automated data checks are di�cult. Moreover,
protocol violation bugs are o�en not taken into account.

2.1.2 Isolation-Performance Trade-o�
User space isolation approaches such as SUD [2] strive to
isolate whole drivers. However, it remains unclear whether
whole drivers or driver code fractions should be isolated for
a practical system. Isolating drivers usually requires manual
e�ort, e.g., rewriting code for new interfaces, and imposes
overheads during runtime which are o�en considered too
high for wide adoption, e.g., due to additional indirection
and data synchronization. If isolating only half the code
of a driver imposes only half the overhead in the common
case but o�ers good enough isolation properties due to a
smart selection of isolated code, such a partitioning could be
a viable option worth of systematic exploration.

We propose to use dynamic analysis to capture the over-
1



EuroDW’17, April 2017, Belgrade, Serbia Oliver Schwahn

heads that a partitioning into kernel space and isolated user
space would impose for drivers. Combining these results
with a graph-based driver code model obtained from static
analysis, we can formulate the driver partitioning problem as
a linear optimization problem. Using a linear solver, we can
explore the space of possible driver partitionings trading-o�
performance with amount of isolated code. Such an approach
allows to �ne-tune the isolation-performance trade-o� to
the operational environment and application requirements.
Preliminary results we obtained using this approach and the
Microdrivers framework [8] for driver synthesis suggest that
such an approach is practicable.
2.2 Driver Testing
We argue that due to the involved overheads, complexity,
and o�en unclear isolation capabilities, more e�orts should
be invested in improving driver code quality. Testing is a
valuable quality assurance measure in so�ware development.
Since drivers are a critical part of the OS, they should be thor-
oughly tested. Unfortunately, driver testing and debugging
has been recognized as being inherently di�cult [1, 5, 12].

2.2.1 Testing in User Space
Existing approaches for driver testing o�en rely on complex
tool chains and are resource and time intensive. For instance,
SymDrive [12], relies on a combination of driver source code
annotation and transformation, vitalization, and symbolic
execution for checking drivers against known bug pa�erns.
However, a lightweight approach with fast feedback for de-
velopers that allows for traditional unit testing techniques
in user space appears to be desirable.

We propose to treat drivers similarly to libraries in user
space, where interfaces can be systematically tested, by ap-
plying techniques similar to those used for user space dri-
ver isolation systems. For instance, SUD [2] relies on User-
Mode Linux (UML) [6] for providing kernel services in user
space. �e device hardware can be abstracted with tradi-
tional mocking or stubbing techniques or with device models
constructed using machine learning [5] or generated from
speci�cations [14, 15], depending on the tests to perform.
Such user space testing would make driver code accessible to
the plethora of debugging and testing tools and techniques
available for user space development.

2.2.2 Test Parallelization
�orough testing requires large numbers of test cases, espe-
cially if a coverage criterion like branch coverage should be
achieved. Traditional sequential test execution takes time
and leaves available computing resources unused. With
multi-core CPUs being the default, testing should ideally
be performed in parallel, i.e., multiple tests should run in
parallel without a�ecting the result validity. Previous work
on parallel robustness testing [18] demonstrates that test
parallelization can greatly improve test throughput. How-
ever, it has also shown that care must be taken to preserve

result validity with increasing parallelism.
With driver tests being performed in user space similar to

library tests, established techniques can be applied to drivers.
To reduce the burden of writing parallelizable tests on the
developer, we propose to rely on static dependency analysis
to identify independent tests that can be executed in parallel
without invalidating test results. We furthermore propose to
study if using multiple threads for parallel execution instead
of processes is feasible to reduce resource consumption and
obtain even higher e�ciency.

References
[1] Tegawendé F. Bissyandé, Laurent Réveillère, Julia L. Lawall, and Gilles

Muller. 2012. Diagnosys: Automatic Generation of a Debugging Inter-
face to the Linux Kernel. In Proc. ASE 2012.

[2] Silas Boyd-wickizer and Nickolai Zeldovich. 2010. Tolerating Mali-
cious Device Drivers in Linux. In USENIX Annu. Tech. Conf.

[3] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. 2001. An Empirical Study of Operating Systems Errors. In Proc.
eighteenth ACM Symp. Oper. Syst. Princ. (SOSP ’01).

[4] Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie. 2015. Automatic Fault
Injection for Driver Robustness Testing. Proc. ISSTA 2015 (2015).

[5] Domenico Cotroneo, Luigi De Simone, Francesco Fucci, and Roberto
Natella. 2015. MoIO: Run-time monitoring for I/O protocol violations
in storage device drivers. In 26th Int. Symp. So�w. Reliab. Eng.

[6] Je� Dike. 2005. �e User-mode Linux Kernel Home Page. (2005).
h�p://user-mode-linux.sourceforge.net

[7] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4 – What
Have We Learnt in 20 Years of L4 Microkernels?. In 24th ACM Symp.
Oper. Syst. Princ. (SOSP ’13).

[8] Vinod Ganapathy, Ma�hew J Renzelmann, Arini Balakrishnan,
Michael M Swi�, and Somesh Jha. 2008. �e Design and Implementa-
tion of Microdrivers. In Proc. 13th Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS XIII).

[9] Ben Leslie, Peter Chubb, Nicholas Fitzroy-dale, Stefan Götz, Charles
Gray, Luke Macpherson, Daniel Po�s, Yueting Shen, Kevin Elphin-
stone, and Gernot Heiser. 2005. User-level Device Drivers: Achieved
Performance. J. Comput. Sci. Technol. (2005).

[10] R Natella, D Cotroneo, J A Duraes, and H S Madeira. 2013. On Fault
Representativeness of So�ware Fault Injection. So�w. Eng. Trans.
(2013).

[11] Nicolas Palix, Gaël �omas, Suman Saha, Christophe Calvès, Julia
Lawall, and Gilles Muller. 2011. Faults in Linux: Ten Years Later. In
Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS XVI).

[12] Ma�hew J Renzelmann, Asim Kadav, and Michael M Swi�. 2012. Sym-
Drive: Testing Drivers Without Devices. In Proc. 10th USENIX Conf.
Oper. Syst. Des. Implement. (OSDI’12).

[13] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. 2009. Dingo:
Taming Device Drivers. In ACM Eur. Conf. Comput. Syst. (EuroSys ’09).

[14] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot
Heiser. 2009. Automatic Device Driver Synthesis with Termite. In Proc.
22nd ACM Symp. Oper. Syst. Princ. (SOSP ’09).

[15] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun
Raghunath, Michael Stumm, and Mona Vij. 2014. User-guided Device
Driver Synthesis. In Proc. OSDI 2014.

[16] M Swi�, M Annamalai, B Bershad, and H Levy. 2006. Recovering
Device Drivers. ACM Trans. Comput. Syst. (2006).

[17] Michael M Swi�, Brian N Bershad, and Henry M Levy. 2003. Improving
the Reliability of Commodity Operating Systems. In Proc. 19th ACM
Symp. Oper. Syst. Princ. (SOSP ’03).

[18] Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri, and
Domenico Cotroneo. 2015. No PAIN, No Gain?: �e Utility of PArallel
Fault INjections. In Proc. 37th Int. Conf. So�w. Eng. (ICSE ’15).

2

http://user-mode-linux.sourceforge.net

	1 The Device Drivers Problem
	2 Research Questions
	2.1 Effectiveness of Isolation
	2.2 Driver Testing

	References

