
Improving Cloud Application Performance with
Simulation-Guided CPU State Management

Mathias Gottschlag
Karlsruhe Institute of Technology

mathias.gottschlag@kit.edu

Most modern scale-out applications are complex appli-
cations and frequently consist of multiple processes with a
very large code working set. These applications are therefore
highly processor front-end limited on most current server
CPUs: The L1 and L2 caches are small compared to the
working set [4], so the workload frequently misses the L2
cache. While most of these misses hit the L3 cache, the
L3 cache is large and therefore has high access latency.
Due to limited memory-level parallelism, the misses there-
fore significantly reduce the performance of the system [4]
(e.g., many workloads spend half of all cycles waiting for
caches[6]).

Several methods to reduce these pipeline stalls have been
proposed, either in the form of adapted processor organiza-
tion with leaner cores and smaller L3 cache [9], or in the
form of improved instruction prefetching and branch pre-
diction [7]. However, these solutions generally involve sig-
nificant hardware changes compared to existing CPU de-
signs. Also, being implemented in hardware, the solutions
are usually less flexible compared to software-only tech-
niques: For example, Kanev et al. show that many cloud
applications frequently experience periods of more intense
computation with higher extracted instruction-level paral-
lelism [6]. Therefore leaner cores might offer significantly
reduced performance for these workloads. More advanced
hardware prefetchers, on the other hand, utilize on-chip ta-
bles of fixed size and therefore do not scale well to arbitrary
code working set sizes, whereas the working set of many
workloads continues to grow [6].

Software prefetching solutions, such as profile-guided
software call graph prefetching[2], are more flexible and can
be used on existing hardware. These solutions prefetch parts
of the working set of the application into caches near the
CPU core (L1 or L2 cache) in advance of the corresponding
accesses, thereby reducing pipeline stalls.

Existing solutions do not utilize the full potential of soft-
ware prefetching, though, as they are mostly designed to add
prefetching code to an application at compile time. Soft-
ware prefetching has to be carefully timed and should not
load more data than necessary[8], because prefetch instruc-
tions compete with the workload for both CPU resources
and memory throughput. In particular, our experiments have
shown that data should not be prefetched if the resulting

cache miss would not cause any significant pipeline stalls.
Therefore, existing software solutions could likely benefit
from more accurate cache miss cost estimation available at
runtime. For example, existing solutions do not provide ade-
quate prefetching for the OS itself, as cache misses in the OS
depend on the size and location of the application working
set. Because the OS has to provide good performance for a
wide range of use cases, it cannot be fitted with application-
specific prefetching code at compile time. Finally, runtime
approaches can utilize OS knowledge (e.g., knowledge about
scheduling or communication patterns) to reduce the effect
of prefetching on the application’s memory throughput.

Research Questions
With our work, we plan to answer the following research
questions:

• How can the operating system collect enough informa-
tion about the application for efficient software prefetch-
ing? In particular, the system might require information
about memory access patterns and about accesses that are
likely to miss the cache.

• At which points in the code of the operating system or of
the application should software prefetching be triggered?

• How can efficient prefetching be implemented for parts
of the CPU that are not accessible via dedicated prefetch
instructions (e.g., instruction or micro-op caches)?

Approach
To answer the questions above, we plan to build a software
prefetching solution for server applications that allows us to
explore a number of potential mechanisms. In particular, we
propose a design that utilizes simulated caches to identify
the important data that has to be prefetched, and that uses
available information about communication patterns in order
to hide prefetching costs.

Simulation Our experiments have shown that data should
not be prefetched if the resulting cache miss would not cause
any significant pipeline stall. Existing CPUs do not contain
any hardware facilities that provide sufficient information
about memory accesses leading to pipeline stalls. To iden-
tify which data has to be prefetched, we therefore propose a



design where the targeted network application and its system
calls are temporarily executed on a simulated processor for
the duration of a single network request. The short simula-
tion duration enables the use of simulated caches and hard-
ware prefetchers in order to identify accesses that are likely
to stall the pipeline.

Utilizing CPU Idle Time As described in [2], the call
graph of the application can be used to determine the points
in the application at which prefetching shall be performed.
Prefetching while the application is running comes at a cost,
though, due to the cost of prefetch instructions.

As server systems are usually partially idle to be able to
process incoming requests with acceptable latency (e.g., [5]
reports average utilization below 50% for the Google cloud),
parts of the cost of prefetching can be hidden: As the operat-
ing system has knowledge about communication patterns of
the system, it can predict the next process whenever the sys-
tem is idle and can start to prefetch the working set of that
process, thereby reducing overall prefetching cost. In situa-
tions where the system is fully utilized and for cache misses
for which prefetching at idle time would be too early, the
system can fall back to a variant of call graph prefetching[2].

Prefetching Mechanism We propose the use of existing
prefetching instructions for software prefetching of both data
and code working sets. Most existing CPUs do not provide
any direct method to load data into the L1 instruction cache.
The L2 cache, however, is unified, has a significantly lower
latency than the L3 cache and is accessible through existing
prefetching instructions. Instruction cache misses that hit
L3 or external memory are often the most important source
of avoidable pipeline stalls. While prefetching into the L2
cache cannot completely prevent these pipeline stalls, we
expect a significant performance improvement.

Related Work
Architectures for server and scale-out applications: It has
been shown that traditional server applications and cloud ap-
plications cannot exploit the full potential of modern wide
out-of-order CPUs due to large numbers of stall cycles in the
CPU front-end [1, 4]. As a result, a number of techniques
have been developed to improve the performance of these
applications, including more efficient instruction cache and
branch prediction prefetchers [7] and multi-core architec-
tures with lean out-of-order processors optimized for cloud
applications [9]. In contrast to these solutions, our proposed
design is usable on existing CPUs and can hide prefetching
latency whenever the CPU is temporary idle.

Call graph prefetching [2] is a code prefetching approach
that can be implemented completely in software and is based
on profiling to generate a call graph of the application.
Whenever a function calls another function, the caller is
extended to unconditionally prefetch the first cache lines
of the callee. In contrast, we plan to employ cache simula-

tion during profiling in order to identify those memory ac-
cesses that cause significant stall cycles, as our experiments
have shown that it is essential to minimize the number of
prefetched memory blocks to obtain good performance.

Speculative precomputation [3] is another software ap-
proach which uses profiling to identify the memory instruc-
tions responsible for most cache misses. In contrast, our ap-
proach tries to identify the memory locations that are fre-
quenty missed. The resulting prefetching code directly ac-
cesses these locations, without any additional address calcu-
lation which would cause further overhead.

Conclusion
Most scale-out and server workloads are limited by memory
access latency, due to their large working sets. Previous ap-
proaches to reduce the number of cache misses are usually
either hardware modifications with limited flexibility and
significant hardware deployment cost or compiler modifica-
tions which suffer from limited information about runtime
application behavior. We plan to investigate methods that use
OS knowledge about scheduling to implement efficient soft-
ware prefetching and prevent expensive pipeline stalls. Our
proposed design uses simulation to establish the required in-
formation about the system, and we propose prefetching dur-
ing idle times to reduce the cost of prefetching.

References
[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.

Wood. DBMSs on a modern processor: Where does time go? In
VLDB’99, pages 266–277, 1999.

[2] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Call
graph prefetching for database applications. ACM TOCS, 21(4):412–
444, 2003.

[3] Jamison D Collins, Hong Wang, Dean M Tullsen, Christopher Hughes,
Yong-Fong Lee, Dan Lavery, and John P Shen. Speculative precom-
putation: Long-range prefetching of delinquent loads. In ISCA’2001,
pages 14–25. IEEE, 2001.

[4] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. In ACM
SIGPLAN Notices, volume 47, pages 37–48. ACM, 2012.

[5] Peter Garraghan, Paul Townend, and Jie Xu. An analysis of the server
characteristics and resource utilization in google cloud. In IC2E’2013,
pages 124–131. IEEE, 2013.

[6] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
warehouse-scale computer. In ISCA’2015, pages 158–169. IEEE, 2015.

[7] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: unified
instruction supply for scale-out servers. In MICRO-48, pages 166–177.
ACM, 2015.

[8] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching
works, when it doesn’t, and why. ACM TACO, 9(1):2, 2012.

[9] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Vo-
los, Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevd-
jic, Sachin Idgunji, Emre Ozer, et al. Scale-out processors. In ACM
SIGARCH Computer Architecture News, volume 40, pages 500–511.
ACM, 2012.


