
Implementing Secure Isolated Containers in an
Operating System Kernel

Aleksandar Andrejevic
Chair for Applied Computer Science

Faculty of Technical Sciences
University of Novi Sad

Novi Sad, Serbia
E-mail: andrejevic@uns.ac.rs

Abstract—This paper describes some of the common methods
of operating system-level virtualization, as well as a PhD research
proposal to implement such a system in an operating system
which manages resources through a centralized object manager
with namespace support.

I. INTRODUCTION

The Monolithium Operating System is a new monolithic
hobby operating system [1]. It is currently developed only for
x86-architecture computers. It aims to be as simple as possible
while still providing most of the features of modern operating
systems. It’s still very early in development, and is, therefore,
subject to major changes. One of the goals of Monolithium
is to see if a very simple but modular design, along with a
very simple implementation, could lead to a reduced number
of defects. It is important to note that Monolithium is not a
Unix-based system [1].

II. SECURE ISOLATED CONTAINERS

Containers are an operating system-level virtualization
method, that use the kernel’s own facilities to separate log-
ically independent user-space systems from each other as well
as from the host system. They are becoming increasingly
popular as a method of separating an application from the
operating system and the physical infrastructure it uses to
connect to the network. The container is instantiated within
the kernel of the operating system and virtualizes the instance
of the application. The popularity of containers and their use
is discussed in [2].

Many current implementations of operating system-level
virtualization exist. The simplest one, available in virtually
all Unix-based operating systems, is chroot [2].

Chroot is a Unix system call that changes the root directory
of the process that calls it, as well as all processes cloned
from that process. By doing this, it restricts filesystem access
to a certain subtree of the global filesystem, thus presenting a
separate, virtual filesystem tree. If a process drops privileges
between calling chroot and executing a different program,
the newly executed program will not be able to call chroot
itself, and will therefore be ”trapped” inside the subtree. A
major issue with chroot is that it is often unacceptable to run
programs without superuser privileges [2].

Linux Containers is a widely used form of operating system-
level virtualization on GNU/Linux. It uses cgroups, a feature
of the Linux kernel, to separate the userspace instance. A
project called Docker aims to provide automation for the
deployment of applications inside containers, and it is already
widely used today [2].

Nevertheless, there are several issues with Linux Containers
that remain to be resolved, such as efficiency, sharing resources
and the complexity of the resource limits configuration [3].

Another implementation of virtualization, developed only
for the FreeBSD operating system, is known as the FreeBSD
jail. It is basically an extension of the chroot system, that
provides a more secure environment than chroot alone, while
allowing superuser privileges inside the jail. Still, jails are
limited, and it’s not possible to mount or unmount disks,
change the network interfaces, nor modify the kernel from
within the jail [4].

III. IMPLEMENTATION IN MONOLITHIUM

Monolithium manages certain resources such as processes,
threads, memory sections, synchronization objects, and files,
using an object-based model [1]. This system could be
modified to group objects into namespaces to facilitate the
separation of certain groups of objects. Currently the object
management system is incomplete and not all resources are
managed through it, but this issue will be resolved in the near
future.

In general, each process would only be able to enumerate
and access objects in its own namespace. Creating, delet-
ing, and switching to a different namespace are privileged
operations, which means access to them is controlled by
Monolithium’s privilege system. In other words, they can
only be executed by processes running as a user with the
appropriate privilege.

Since processes in Monolithium ”open” objects to work
with them, handles to already opened objects will not be lost
after a namespace switch. This could be used to implement
resource sharing between containers.

This system could also be made recursive, if namespaces
had their own hierarchy. Each namespace would have its own
set of users, and therefore, its own superuser which could



create namespaces but only under the restriction of the current
namespace. Only the superuser of the root namespace can
access all the objects in the system.

Theoretically, it should be possible for programs running
inside containers to privately mount devices in their own
namespace. Many problems associated with mounting devices
inside containers on Unix-like systems are avoided thanks to
the robust privilege system, as well as the lack of setuid-related
security risks.

The major difference between this approach and other im-
plementations of containers is that an object-based system with
namespaces works in the lowest level of the operating system
kernel, and doesn’t represent an extension of the kernel’s
feature set, but rather an innate ability of the kernel to split
the user-space into multiple, and possibly nested, domains.

IV. CONCLUSION

The hypothesis of the proposed research is that the object-
based model of Monolithium could provide a better foundation
for operating system-level virtualization than the typical file
system abstraction provided by Unix-like operating systems.

This is the main idea upon which the PhD research proposal
described in this paper is founded.

The expected advantages to implementing containers in the
object manager of an operating system kernel are simplicity
of the design, improved code readability, and enhanced per-
formance.

The biggest obstacle for achieving this goal is the incom-
pleteness of Monolithium, and its constantly shifting design.
The first issue that needs to be resolved on the research road
map is the management of objects outside of the object system,
such as user accounts.

REFERENCES

[1] Aleksandar Andrejevic, An Operating System Kernel for x86-Architecture
Computers, 2016 (in Serbian)

[2] Scott Hogg, Software Containers: Used More Frequently than Most
Realize, http://www.networkworld.com/article/2226996/cisco-subnet/
software-containers--used-more-frequently-than-most-realize.html
(Accessed: 01 Feb 2017)

[3] Nathan Willis, Seven problems with Linux containers, 2014, https://lwn.
net/Articles/588309/ (Accessed: 01 Feb 2017)

[4] Poul-Henning Kamp and Robert N. M. Watson, Jails: Confining the
omnipotent root, 2000, http://phk.freebsd.dk/pubs/sane2000-jail.pdf (Ac-
cessed: 01 Feb 2017)


