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I. Introduction

Due to recent trends, such as SoCs and rack-scale
architectures, hardware is getting more diverse.
Accelerator cards increase the heterogeneity inside
a single system. On the software side, the trend
goes towards direct hardware access in user space
and virtualization, creating new demands for an op-
erating system. State of the art operating systems
are often designed with simplistic assumptions
about the underlying hardware.

The complexity of current hardware makes it
hard to write correct system software. One partic-
ular task system software has to deal with, is re-
ceiving interrupts and configuring interrupt con-
trollers. Interrupts may originate from a variety of
sources like devices or other CPUs. Unlike often
stated in textbooks, each interrupt has individual
constraints to which CPUs it may be delivered.
For instance, the TI OMAP 4460 SoC contains
multiple processors, such as two Cortex A9 cores,
a DSP and two Cortex M3 cores. The DMA engine
is able to generate different interrupts, some of
them can be sent to all cores, while others can not
be sent to the DSP. Furthermore, they appear as
different vectors on each CPU.

To understand such hardware better, we started
developing a formal model of interrupt delivery.
It became clear that it overlapped considerably
with the problem of modeling memory address-
ing [Ach17], and the same basic model could en-
compass both [AHCR17]. To give an intuition:
The dual of a device issuing interrupt vectors is
a CPU issuing memory addresses. A memory ac-
cess undergoes multiple translations, for instance
a virtual to physical address translation, likewise
an interrupt undergoes multiple different repre-
sentations, for instance when passing through an
interrupt controller.

Similar phenomena do not only occur in SoCs,
but also in commodity X86 systems, especially
when combined with accelerator cards such as a
Xeon Phi or hardware assisted virtualization. In
the context of emerging rackscale architectures,
we expect a great variety of interrupt systems.

Current approaches in operating systems are
driven by the goal of configuring the system into a
working state. Assumptions about both the hard-
ware and the desired configuration often influence
the design of data structures and algorithms. For
instance Linux assumes that interrupts are always
broadcast to all CPU’s [BC05] and therefore does
not differentiate between the same vector reaching
different CPUs.

This has lead to abstractions, that are not flex-
ible enough to cope well with today’s hardware
heterogeneity. The above assumptions prevents
a single instance of Linux executing on both, the
A9 and M3 cores. While it is possible to execute
an isolated Linux on the M3 cores, it will not
share any state with the one running on the A9
cores. One of the drawbacks of this solution is that
threads are not migrated automatically between
A9 and M3 cores.

II. Goals and challenges

The primary goal is to develop an all-embracing
model of hardware notification delivery and an
operating system built on top of that. It should
cope with the diversity and heterogeneity found
in modern machines. Unlike current designs, our
approach is driven by a generic model that can
express all hardware. Representations used in the
operating system are either equivalent or addi-
tional assumptions are made explicit.

We would like to include a broader class of noti-
fication mechanisms: For instance the OMAP SoC
mentioned in the introduction has a mailbox de-
vice to create interrupts on the M3 cores from the
A9 cores. In a rackscale setting, RDMA network-
ing can deliver notifications to remote machines.

We would like to proof correctness properties
of configuration algorithms, such as creating a
configuration that minimizes vector sharing or
latency.

Configuration To do so, our model must be ex-
tended to contain information about the configu-
ration options of interrupt translating nodes. This
is complicated, since each interrupt controller
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presents a unique set of configuration constraints.
Typically the set of nodes where an interrupt can
be directed is limited, but some controllers present
other constraints, for instance: ARMs GIC con-
troller can route vectors to different nodes, but
the vector number must remain the same. MSI
enabled PCI cards will always generate consec-
utive interrupt vectors. Also, to write a generic
configuration algorithm, we need a representation
of the model inside system software. Encoding
the model in a space efficient and useful way is
not easy since the configuration space is large and
due to varying controller constraints very hetero-
geneous.

Multicast In notification systems multicast is of-
ten encountered. While our static model does
express multicast, it needs to be extended to con-
tain configuration options, especially what sets of
destination nodes are permissible. Furthermore
it should express the delivery mode: Whether
the notification is delivered to all nodes in the
destination set, to just one or to any other subset.

Reconfiguration The next step will be reconfigu-
ration of the system. For example when migrating
a device driver to another core, the destination of
a device interrupt has to be changed. We would
like to show that a reconfiguration algorithm does
so without creating any notifications that are de-
livered to the wrong node. To do that, we must
include a notion of atomicity in the model, since
not all controllers support atomic updates.

Feedback In the process of working with this
abstraction, we would also like to give feedback
to hardware designers on what is good hardware
from a systems programmer perspective. Such
feedback can be derived from our model by either
introducing a complexity metric on a given rep-
resentation (like the maximum number of nodes
an interrupt passes) or by investigating additional
properties that allows our model to be represented
much more compactly. For instance, we expect
the configuration space representation to become
much smaller, if each vector on all controllers can
be controlled independently.

Authorization Since we were able to use the
same model for memory accesses and interrupts
[AHCR17], it might be possible to use the same
protection mechanism for both. Thus reducing
the amount of code that has to be trusted.

We plan to implement a prototype on the Bar-
relfish operating system. Specifically leveraging
the System Knowledge Base [SBRP11], a declar-
ative Prolog/CLP database that contains facts

about the current system, to express the model
and algorithms that work on it in a high level
language.

III. Related Work

Some representations exist that are trying to in-
formally describe hardware: The closest work to
this proposal is made by Device Trees [dev16],
which describes a binary file format now used
extensively in the Linux kernel to handle non-
discoverable devices. While a Device Tree cap-
tures some information about, for example, the
addresses of devices as seen from a single core
(the root of the tree), it has no well-defined se-
mantics for interpreting the data. Moreover, it is
not well-suited for heterogeneous systems where
a single hierarchy is a poor match for hardware,
and does not capture caches, TLBs, or the view of
the system from DMA-capable devices.

Schüpbach et al. [SBRP11] applied a declarative
approach to the configuration of the memory win-
dows of PCI bridges. However, no comprehensive
representation of the memory or interrupt subsys-
tem is presented.
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