
Refinement Proofs and

Techniques
Suha Orhun Mutluergil

Koc University, Istanbul, Turkey

Refinement

 In general: A concrete and complex system 𝑆1 refines the abstract system

𝑆2 iff 𝑆2 completely captures the behaviors of 𝑆1.

 For automata/state machines/transition systems

 Refinement is based on observable actions alphabet Σ.

 Formally: A Labeled Transition System (LTS) 𝐿1 Σ −refines the LTS 𝐿2 iff for every

trace 𝜏 of 𝐿1, there exists a trace 𝜏′ of 𝐿2 such that 𝜏 Σ = 𝜏′ Σ.

 Example: L1 = 〈𝑆1 = 𝑠0, 𝑠1, … , Σ1 = 𝛼, 𝛽, 𝛾 , 𝛿1〉 s.t. 𝛿1 ⊆ 𝑆1 × Σ1 × S1

𝐿2 = 〈𝑆2 = 𝑞0, 𝑞1, … , Σ2 = 𝛼, 𝛽, 𝜃 , 𝛿2〉 s.t. 𝛿2 ⊆ 𝑆2 × Σ2 × 𝑆2

Σ = {𝛼, 𝛽}

𝑠0

𝛼
𝑠1

𝛾
𝑠2

𝛽
𝑠3

𝛽
𝑠4

𝑞0

𝛼
𝑞1

𝛽
𝑞2

𝜃
𝑞3

𝛽
𝑞4

Refinement

 In general: A concrete and complex system 𝑆1 refines the abstract system

𝑆2 iff 𝑆2 completely captures the behaviors of 𝑆1.

 For automata/state machines/transition systems

 Refinement is based on observable actions alphabet Σ.

 Formally: A Labeled Transition System (LTS) 𝐿1 Σ −refines the LTS 𝐿2 iff for every

trace 𝜏 of 𝐿1, there exists a trace 𝜏′ of 𝐿2 such that 𝜏 Σ = 𝜏′ Σ.

 Example: L1 = 〈𝑆1 = 𝑠0, 𝑠1, … , Σ1 = 𝛼, 𝛽, 𝛾 , 𝛿1〉 s.t. 𝛿1 ⊆ 𝑆1 × Σ1 × S1

𝐿2 = 〈𝑆2 = 𝑞0, 𝑞1, … , Σ2 = 𝛼, 𝛽, 𝜃 , 𝛿2〉 s.t. 𝛿2 ⊆ 𝑆2 × Σ2 × 𝑆2

Σ = {𝛼, 𝛽}

𝑠0

𝜶
𝑠1

𝛾
𝑠2

𝜷
𝑠3

𝜷
𝑠4

𝑞0

𝜶
𝑞1

𝜷
𝑞2

𝜃
𝑞3

𝜷
𝑞4

How to Prove Refinement

 In general, proofs depend on finding a particular kind of relations/functions that
relates states of 𝐿1 to states of 𝐿2.

 Refinement mappings, forward simulation relations, backward simulation relations

 Completeness issues: None of these relations/functions are complete.

 Refinement Mappings

 Complete if 𝐿1 is a forest and 𝐿2 is deterministic.2

 Otherwise, history and/or prophecy variables may need to be added.1

 Forward Simulations

 Complete if 𝐿2 is deterministic.2

 Otherwise, prophecy variables may need to be added.2

 Backward Simulations

 Complete if 𝐿1 is a forest.2

 Otherwise, history variables may need to be added.2

1. Abadi, M., & Lamport, L. (1991). The existence of refinement mappings. Theoretical Computer Science, 82(2), 253-284.

2. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Untimed systems. Information and

Computation, 121(2), 214-233.

Proving Linearizability

using Forward Simulationsǂ
Joint work with Ahmed Bouajjani1, Constantin Enea1 and Michael Emmi2

1:IRIF, University of Paris Diderot

2:Nokia Bell Labs

ǂ: To Appear in CAV'17

A Brief Overview

 Scope: Proving correctness of concurrent stack and queue

implementations (which eventually boils down to a refinement proof).

 Contributions: A new stack and queue LTS specifications that are more

useful than the standard specifications for the proofs

 Shown the equivalence to the standard specifications

 Existence of forward simulations is guaranteed if some properties are known for

the dequeue/pop methods of the implementations.

 Experiments/Applications

 Shown the correctness of Herlihy-Wing Queue1 by finding a forward simulation

relation to the new queue implementation.

 Shown correctness of Time-Stamped Stack2 finding a forward simulation relation

to the new stack implementation.

1. Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness condition for concurrent objects." ACM Transactions on

Programming Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

2. Dodds, Mike, Andreas Haas, and Christoph M. Kirsch. "A scalable, correct time-stamped stack." ACM SIGPLAN Notices. Vol. 50. No.

1. ACM, 2015.

Linearizability

 The standard correctness condition for concurrent data structures/libraries.

 Call and return actions mark the beginning and end of methods.

 History: Projection of a trace over call and return actions (𝐶 ∪ 𝑅).

 𝐿1 is linearizable with respect to the specification 𝐿2 iff there exists a

linearization point of every operation in the history ℎ1 btw its call and return

points such that the same operation of 𝐿2 takes place atomically at that

point.

inv(deq) ret(deq,3)

inv(enq,5) ret(enq)

inv(enq,3) ret(enq)

enq(5)deq(3)enq(3)

How to Prove Linearizability of Queues

 Standard abstract specification 𝐴𝑏𝑠𝑄0:

 State: 𝑞: ℕ𝜔

 Actions: 𝑖𝑛𝑣(𝑒𝑛𝑞, 𝑑), 𝑙𝑖𝑛 𝑒𝑛𝑞, 𝑑 , 𝑟𝑒𝑡(𝑒𝑛𝑞), 𝑖𝑛𝑣(𝑑𝑒𝑞), 𝑙𝑖𝑛(𝑑𝑒𝑞, 𝑑), 𝑟𝑒𝑡(𝑑𝑒𝑞, 𝑑)

 𝑙𝑖𝑛 𝑒𝑛𝑞, 𝑑 ≔ 𝑞′ = 𝑞 ∘ 〈𝑑〉

 𝑙𝑖𝑛 𝑑𝑒𝑞, EMPTY ≔ 𝑞 = ⇒ q′ = q

 𝑙𝑖𝑛 𝑑𝑒𝑞, 𝑑 ≔ 𝑞 = 𝑑 ∘ 𝑠 ∧ 𝑑 ≠ EMPTY ⇒ 𝑞′ = 𝑠

 Showing that the implementation 𝐿1 𝐶 ∪ 𝑅 −refines 𝐴𝑏𝑠𝑄0 is sufficient.

 If we know the linearization points of enqueue or dequeue methods, finding

𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛 −refinements are easier.

Observations about Implementations

 Linearization points of enqueues are usually not fixed (depends on the

execution).

 Linearization points of dequeues are usually fixed and easy to determine.

 𝐴𝑏𝑠𝑄0 is not deterministic in terms of 𝐶 ∪ 𝑅 and 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛 𝑑𝑒𝑞 .

inv(enq,3) lin(enq,3) ret(enq)

inv(enq,5) lin(enq,5) ret(enq) 𝑞 = 〈3,5 〉

Observations about Implementations

 Linearization points of enqueues are usually not fixed (depends on the

execution).

 Linearization points of dequeues are usually fixed and easy to determine.

 𝐴𝑏𝑠𝑄0 is not deterministic in terms of 𝐶 ∪ 𝑅 and 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛 𝑑𝑒𝑞 .

inv(enq,3) lin(enq,3) ret(enq)

inv(enq,5) lin(enq,5) ret(enq) 𝑞 = 〈5,3 〉

New Abstract Queue 𝐴𝑏𝑠𝑄

 States: Strict partial order of enqueue

operations based on happens-before relation.

They can be pending or completed

 Actions: 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛(𝑑𝑒𝑞)

 𝐴𝑏𝑠𝑄 is deterministic in terms of 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛(𝑑𝑒𝑞)

 𝐴𝑏𝑠𝑄 produces same histories with 𝐴𝑏𝑠𝑄0.

 Example Application: Showing linearizability of

Herlihy & Wing Queue1 by finding a forward

simulation to 𝐴𝑏𝑠𝑄.

𝑒1 𝑒2

𝑒3

𝑒5

𝑒4

𝑒6

:COMPLETED :PENDING

dequable minimal
nodes

1. Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness condition for concurrent objects." ACM Transactions on

Programming Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

The Stack Case

 A natural conversion of 𝐴𝑏𝑠𝑄 to 𝐴𝑏𝑠𝑆 exists. Pops remove maximal elements
instead of minimal elements.

 Similar observations on implementations: linearization points of pushes are
not fixed. For complicated examples, linearization points of pops are not
fixed neither. But, we can determine commit points (that fixes the return
value) of pops.

 𝐴𝑏𝑠𝑆0 is not deterministic in terms of 𝐶 ∪ 𝑅 or 𝐶 ∪ 𝑅 ∪ 𝑐𝑜𝑚(𝑝𝑜𝑝).

 We introduce a new 𝐴𝑏𝑠𝑆 that produces different from the dual of 𝐴𝑏𝑠𝑄,
equivalent executions with 𝐴𝑏𝑠𝑆0 and deterministic in terms of 𝐶 ∪ 𝑅 ∪
𝑐𝑜𝑚 𝑝𝑜𝑝 .

 We have shown its applicability by finding a forward simulation from the
complicated Time-Stamped Stack1 implementation to 𝐴𝑏𝑠𝑆.

1. Dodds, Mike, Andreas Haas, and Christoph M. Kirsch. "A scalable, correct time-stamped stack." ACM SIGPLAN Notices. Vol. 50. No.

1. ACM, 2015.

Conclusions & Other Interests

 Future work: Extending the idea to other data structures like sets.

 Future work: Mechanizing the proofs on Boogie/CIVL proof system

developed by Microsoft Research and Koc University.

 Other interests:

 Refinement proofs for weak memory models.

 Particularly, extending the CIVL proof system for TSO memory model.

 New proof rules for TSO.

 Extending the concept of linearizability for WMM.

Thank You

 Any Questions?

How to Prove Linearizability

inv(deq) ret(deq,3)

inv(enq,5) ret(enq)

inv(enq,3) ret(enq)

inv(enq,3) ret(enq)

inv(enq,5) ret

inv(deq) ret(deq,3)

lin(enq,3)

lin

lin

inv lin ret inv lin retinv lin ret

How to Prove Refinement -1

 Refinement Mappings: 𝑓: 𝑄𝐶 → 𝑄𝐴

 Initial: 𝑠 ∈ 𝐼𝑛𝑖𝑡 𝐿𝐶 ⇒ 𝑓 𝑠 ∈ 𝐼𝑛𝑖𝑡(𝐿𝐴)

 Step:

 Complete if 𝐿𝑐 is a forest and 𝐿𝐴 is deterministic.2

 History and/or Prophecy variables may be needed to be added to find a

ref. map.1

AbstractConcrete

𝑠1

𝑠2

𝑎

𝑡1

𝑡2

𝑎+

f

f

1. Abadi, M., & Lamport, L. (1991). The existence of refinement mappings. Theoretical Computer Science, 82(2), 253-284.

2. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Untimed systems. Information and

Computation, 121(2), 214-233.

Let Σ ⊆ Σ𝐶 , Σ𝐴 be the refinement alphabet.

If 𝑎 ∈ Σ, then, 𝑎+ ∈ Σ𝐴 ∖ Σ ∗𝑎 Σ𝐴 ∖ Σ ∗.

If 𝑎 ∉ Σ, then 𝑎+ ∈ Σ𝐴 ∖ Σ ∗.

How to Prove Refinement -2

 Forward Simulation Relations: fs ⊆ 𝑄𝐶 × 𝑄𝐴

 Initial: 𝑠 ∈ 𝐼𝑛𝑖𝑡 𝐿𝐶 ⇒ 𝑓𝑠 𝑠 ∩ 𝐼𝑛𝑖𝑡 𝐿𝐴 ≠ ∅

 Step:

 Complete if 𝐿𝐴 is deterministic.1

 Prophecy variables may be needed to be added to find a frw. sim. rln.1

AbstractConcrete

𝑠1

𝑠2

𝑎

𝑡1
1

𝑡2
1

𝑎+

fs

fs

𝑡1
2

𝑡2
2

𝑎+

1. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Untimed systems. Information and

Computation, 121(2), 214-233.

How to Prove Refinement -3

 Backward Simulation Relations: bs ⊆ 𝑄𝐶 × 𝑄𝐴

 Initial: 𝑠 ∈ 𝐼𝑛𝑖𝑡 𝐿𝐶 ⇒ 𝑏𝑠 𝑠 ⊆ 𝐼𝑛𝑖𝑡(𝐿𝐴)

 Step:

 Complete if 𝐿𝑐 is a forest.1

 History variables may be needed to be added to find a bck. sim. rln.1

AbstractConcrete

𝑠1

𝑠2

𝑎

𝑡1
1

𝑡2
1

𝑎+

bs

bs

𝑡1
2

𝑡2
2

𝑎+

1. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Untimed systems. Information and

Computation, 121(2), 214-233.

New Abstract Queue 𝐴𝑏𝑠𝑄

Results on 𝐴𝑏𝑠𝑄

 𝐴𝑏𝑠𝑄 is a 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛 𝑑𝑒𝑞 -refinement of 𝐴𝑏𝑠𝑄0.

 𝐴𝑏𝑠𝑄0 is a 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛 𝑑𝑒𝑞 -refinement of 𝐴𝑏𝑠𝑄.

 𝐴𝑏𝑠𝑄 is deterministic in terms of 𝐶 ∪ 𝑅 ∪ 𝑙𝑖𝑛(𝑑𝑒𝑞).

 If 𝐿𝐶 is a queue implementation for which linearization or commit points of

dequeue is known and fixed, we can find a forward simulation relation from

𝐿𝐶 to 𝐴𝑏𝑠𝑄.

 Example: Herlihy-Wing Queue1

1. Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness condition for concurrent objects." ACM Transactions on

Programming Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

What about Stacks?

𝐴𝑏𝑠𝑆 Extensions

 Keep track of pushes that can be removed by a pop:

 Nodes that are pending or maximally closed when the pop started (initialize 𝑏𝑒
and 𝑜𝑣 sets)

 Pushes that overlap with the pop (extend 𝑜𝑣 set)

 Nodes that become maximal while the pop was executing (update 𝑏𝑒 set)

 NOTE: New 𝐴𝑏𝑠𝑆 keeps working for implementations with fixed pop

linearization points.

 How it actually works:

Results on 𝐴𝑏𝑠𝑆

 𝐴𝑏𝑠𝑆 is a 𝐶 ∪ 𝑅-refinement of 𝐴𝑏𝑠𝑆0.

 𝐴𝑏𝑠𝑆0 is a 𝐶 ∪ 𝑅-refinement of 𝐴𝑏𝑠𝑆.

 𝐴𝑏𝑠𝑆 is deterministic in terms of 𝐶 ∪ 𝑅 ∪ 𝑐𝑜𝑚(𝑝𝑜𝑝).

 If 𝐿𝐶 is a stack implementation for which linearization or commit points of

pop is known and fixed, we can find a forward simulation relation from 𝐿𝐶 to

𝐴𝑏𝑠𝑆.

 Example: Time-Stamped Stack1

1. Dodds, Mike, Andreas Haas, and Christoph M. Kirsch. "A scalable, correct time-stamped stack." ACM SIGPLAN Notices. Vol. 50. No.

1. ACM, 2015.

