Refinement Proofs and
Technigues

Suha Orhun Mutluergil

Koc University, Istanbul, Turkey

Refinement

» |n general: A concrete and complex system S; refines the abstract system
S, iff S, completely captures the behaviors of §;.

®» For automata/state machines/transition systems
» Refinement is based on observable actions alphabet .

» Formally: A Labeled Transition System (LTS) L, £ —refines the LTS L, iff for every
trace t of Ly, there exists a trace 1’ of L, such that 7|y = 7’|5.

» EXCImp|e Ll = (Sl = {So, Sl' }, 21 =S {C(, :81 y}, 51) ST 51 C Sl X 21 X Sl
L2 = (SZ = {CIOfCh: }, 22 = {a,ﬁ, 9}, 52) s.1. 52 - SZ X 22 X Sz
X ={a,p}

o—0—0—0—0

o—0—0—/0—0

Refinement

» |n general: A concrete and complex system S; refines the abstract system
S, iff S, completely captures the behaviors of §;.

®» For automata/state machines/transition systems
» Refinement is based on observable actions alphabet .

» Formally: A Labeled Transition System (LTS) L, £ —refines the LTS L, iff for every
trace t of Ly, there exists a trace 1’ of L, such that 7|y = 7’|5.

» EXCImp|e Ll = (Sl = {So, Sl' }, 21 =S {C(, :81 y}, 51) ST 51 C Sl X 21 X Sl
L2 = (SZ = {CIOfCh: }, 22 = {a,ﬁ, 9}, 52) s.1. 52 - SZ X 22 X Sz
X ={a,p}

o—0—0—0—0

o—0—0—/0—0

How to Prove Refinement

® |n general, proofs depend on finding a parficular kind of relations/functions that
relates states of L, to states of L,.

» Refinement mappings, forward simulation relations, backward simulation relations
» Completenessissues: None of these relations/functions are complete.
» Refinement Mappings

» Complete if Ly is a forest and L, is deterministic.?
» Otherwise, history and/or prophecy variables may need to be added.!

» Forward Simulations
» Complete if L, is deterministic.?
» Otfherwise, prophecy variables may need to be added.?
» Backward Simulations
» Complete if L, is a forest.2
» Otherwise, history variables may need to be added.?
1. Abadi, M., & Lamport, L. (1991). The existence of refinement mappings. Theoretical Computer Science, 82(2), 253-284.

2. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Untimed systems. Information and
Computation, 121(2), 214-233.

Proving Linearizability
using Forward Simulations*

Joint work with Ahmed Bouaijjani!, Constantin Enea! and Michael Emmi?

IRIF, University of Paris Diderot
2:Nokia Bell Lalbs

A Brief Overview

» Scope: Proving correctness of concurrent stack and queue
implementations (which eventually boils down to a refinement proof).

» Contributfions: A new stack and queue LTS specifications that are more
useful than the standard specifications for the proofs

®» Shown the equivalence to the standard specifications

» Existence of forward simulations is guaranteed if some properties are known for
the dequeue/pop methods of the implementations.

®» Experiments/Applications

» Shown the correctness of Herlihy-Wing Queue! by finding a forward simulation
relation to the new queue implementation.

» Shown correctness of Time-Stamped Stack? finding a forward simulation relation
to the new stack implementation.

1. Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness condifion for concurrent objects." ACM Transactions on
Programming Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

2. Dodds, Mike, Andreas Haas, and Christoph M. Kirsch. "A scalable, correct time-stamped stack." ACM SIGPLAN Notices. Vol. 50. No.
1. ACM, 2015.

Linearizability

» The standard correctness condition for concurrent data structures/libraries.
» Call and return actions mark the beginning and end of methods.
» History: Projection of a trace over call and return actions (C U R).

» [, islinearizable with respect to the specification L, iff there exists a
linearization point of every operation in the history h; biw its call and return
points such that the same operation of L, takes place atomically at that
point.

inv(enq,3) ret(enq)

%
Y~ inv(enq,5) ret(enq)
‘ inv(deq) @‘ ret(deq,3)

How to Prove Linearizabllity of Queues

» Standard abstract specification AbsQ,:
» Stafe: q: N
» Actions: inv(eng, d), lin(enq,d), ret(enq), inv(deq). lin(deq, d), ret(deq, d)
= lin(eng,d) =q' = q°{(d)
® [in(deq, EMPTY) =q=()=>q =q
®» [in(deq,d) =q=(d)osAd#EMPTY=q =s

= Showing that the implementation L; C U R —refines AbsQ, is sufficient.

» |f we know the linearization points of enqueue or dequeue methods, finding
C U R U lin —refinements are easier.

Observations about Implementations

» |inearization points of enqueues are usually not fixed (depends on the
execution).

®» |inearization points of dequeues are usually fixed and easy to determine.

® AbsQ, is not deterministic in terms of CUR and C U R U lin(deq).

inv(enq,3) lin(engq,3) ret(enq)
inv(enq,5) lin(engq,5) ret(enq) q = (3,5>

o o

Observations about Implementations

» |inearization points of enqueues are usually not fixed (depends on the
execution).

®» |inearization points of dequeues are usually fixed and easy to determine.

® AbsQ, is not deterministic in terms of CUR and C U R U lin(deq).

inv(enq,3) lin(engq,3) ret(enq)
inv(enq,5) lin(enq,5) ret(enq) q = (5;3)

oeS—©

New Abstract Queue AbsQ

» States: Strict partial order of enqueue
operations based on happens-before relation.
They can be pending or completed

» Actions: C UR U lin(deq)
» AbsQ is deterministic in terms of C U R U lin(deq)

®» AbsQ produces same histories with AbsQ,.

» Example Application: Showing linearizability of
Herliny & Wing Queue' by finding a forward
simulation to AbsQ.

dequable minimal
nodes

‘ :COMPLETED ‘ :PENDING

1. Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness condition for concurrent objects." ACM Transactions on
Programming Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

The Stack Case

» A natural conversion of AbsQ to AbsS exists. Pops remove maximal elements
instead of minimal elements.

» Similar observations on implementations: linearization points of pushes are
not fixed. For complicated examples, linearization points of pops are not
fixed neither. But, we can determine commit points (that fixes the return
value) of pops.

® AbsS, is not deterministic in terms of CUR or C U R U com(pop).

» We introduce a new AbsS that produces different from the dual of AbsQ,
equivalent executions with AbsS, and deterministic in terms of C UR U

com(pop).

» We have shown its applicability by finding a forward simulation from the
complicated Time-Stamped Stack! implementation to AbsS.

1. Dodds, Mike, Andreas Haas, and Christoph M. Kirsch. "A scalable, correct time-stamped stack." ACM SIGPLAN Notices. Vol. 50. No.
1. ACM, 2015.

Conclusions & Other Interests

» [uture work: Extending the idea to other data structures like sefs.

» [Future work: Mechanizing the proofs on Boogie/CIVL proof system
developed by Microsoft Research and Koc University.

» Ofher interests:

» Refinement proofs for weak memory models.

» Particularly, extending the CIVL proof system for TSO memory model.
= New proof rules for TSO.

» Extending the concept of linearizability for WMM.

Thank You

» Any Questions?

How to Prove Linearizability

inv(enq,3) ret(enq)

, inv(enq,5) ’ ret(enq)

]]
i | M
! (I ! hret
— _:___l_l_|__'l'_ =0 —
inv(enq,3) lin(enq,3) : ret(enq) : : :
0 : 0
! inv(enq,5) : lin ret :
,’ % !
.]
'l inv(deq) lin g ret(deq,3)
[}
!
—_— e s e AN
— — s — o — —
[} /’ \
/] ’ \
inv lin ret inv lin , ret inv Yin ret

How to Prove Refinement -1

» Refinement Mappings: f: Q¢ = Q4
» |nitial: s € Init(L;) = f(s) € Init(Ly)

» Step: g

M
°

» Complete if L, is a forest and L, is deterministic.?

Let X € X, Z, be the refinement alphabet.
Ifa € 2, then, at € C,\ 2)*a(C, \ 2)*.
Ifa ¢ X thenat € (Z,\X)".

» History and/or Prophecy variables may be needed 1o be added to find a
ref. map.!

1. Abadi, M., & Lamport, L. (1991). The existence of refinement mappings. Theoretical Computer Science, 82(2), 253-284.
2. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part |: Untimed systems. Information and

Computation, 121(2), 214-233.

How to Prove Refinement -2

» Forward Simulafion Relations: fs € Q. X Q4
» [nitial: s € Init(Ly) = fs[s] nInit(Ly) + @
» Step: 7) a ™\

o

atl 'a*

fs

\ N 4 e/
» Complete if L, is deterministic.!
» Prophecy variables may be needed to be added to find a frw. sim. rin.!

1. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Untimed systems. Information and
Computation, 121(2), 214-233.

How to Prove Refinement -3

» Backward Simulation Relations: bs € Q. X Q4

» |nifial: s € Init(L:) = bs[s] S Init(L,)

» Step: oS / \

ty
o5

A N

s

a— =

» Complete if L, is a forest.

)

» History variables may be needed to be added to find a bck. sim. rin.!

1. Lynch, N. A., & Vaandrager, F. W. (1995). Forward and backward simulations. Part I: Unfimed systems. Information and
Computation, 121(2), 214-233.

New Abstract Queue AbsQ

inv(eng,x,1) ret(eng, 1) no(dea.3) lin(d 3 d 3
. inv(deq, 3) lin(deq, x, 3) ret(deq, x, 3)

inv(eng,y,2) ret(eng,?2) ® ® ®

e—©O
(. PEND); (x, COMP); (, COMP) | (. COMP) (a, CDMP)

@ @

@é@ é@@

(4, PEND) ' (y. CONP) ' (y, COMP) (y.COMP) (y, COMP)

Results on AbsQ

® AbsQ isa C UR U lin(deq)-refinement of AbsQ,.
®» AbsQ,is A C UR U lin(deq)-refinement of AbsQ.
® AbsQ is deterministic in tferms of C U R U lin(deq).

» |f L. IS a queue implementation for which linearization or commit points of
deqgueue is known and fixed, we can find a forward simulation relation from
LC TO AbSQ

» Example: Herlihy-Wing Queue!

1. Herlihy, Maurice P., and Jeannette M. Wing. "Linearizability: A correctness condition for concurrent objects." ACM Transactions on
Programming Languages and Systems (TOPLAS) 12.3 (1990): 463-492.

What about Stackse

push(y, 3)
thread 0 OO0
push(x,2)
thread 1 | @—@ push(z,4)
thread 2 o—o pop(2;5)
pop(x, 1) C'AS = true
e ® @
CAS = true
pools N pools "\ pools e pools ey
thread 0 (L,—1) (y,1)—(L,—1) (y,1)—(L,—1) (y, 1)—(L,—1)
M Y e N
thread 1 (L,—1) (@,0)=(L,—1) (2,0)—=(L,—1) (L,—1)
X e
thread 2 (L,-1) (2,2)=(L,—1) (L, —1) (L,-1)
i iy iy

pop(y,6)

CAS = true
pools

2

(lv 71)

2

(l7 _1)

2

(J-v 71)

AbsS Extensions

» Keep track of pushes that can be removed by a pop:

and ov sets)

linearization points.

» How it actually works:

push(x,1)

o—©@

11”.‘1‘]’.’(.!'. l)

®» Pyshes that overlap with the pop (extend ov set)

push(y.2)

OTE: New AbsS keeps working for mplemen’rohons with flxed pop

» Nodes that are pending or maximally closed when the pop started (initialize be

odes that become maximal while the pop was executing (update be set)

pop(x.3)

com(pop, x,3)

(x,COMP) (y. PEND)E

be(3) ou(3)

push(z,3)
@

push(y.2

)
@

push(t, 4)
@ L

(ax,COMP) (z.COMP) | (.,

O—O
@—0

(1. COMP) (t.COMP) | (v,

poply. -1)

com(pop, y,4)

(y.PEND)| (v, PEND)
ov(4)
pop(t. 5) com(pop.t.5)
® @
pop(_, G)
(2, COMP) (z,COMP) (. COMP) (z.COMP)
D@) (e (5
be(6) be(6)
@D—@:6) . @:bel)
be(6
(4:CONP) (, covp) | (4-COMP)

Results on AbsS

» AbsS is a C U R-refinement of AbsS,.
® AbsS, is A C U R-refinement of AbsS.
» AbsS is deterministic in terms of C U R U com(pop).

» |f L. is astack implementation for which linearization or commit points of

pop is known and fixed, we can find a forward simulation relation from L. to
AbsS.

» Example: Time-Stamped Stack!

1. Dodds, Mike, Andreas Haas, and Christoph M. Kirsch. "A scalable, correct time-stamped stack." ACM SIGPLAN Nofices. Vol. 50. No.
1. ACM, 2015.

